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SUMMARY

Computation of vertical velocity within the con®nes of a three-dimensional, ®nite element model is a dif®cult but
important task. This paper examines four approaches to the solution of the overdetermined system of equations
arising when the ®rst-order continuity equation is solved in conjunction with two boundary conditions. The
traditional (TRAD) method neglects one boundary condition, solving the continuity equation with the remaining
boundary condition. The vertical derivative of continuity (VDC) method involves solution of the second-order
equation obtained by differentiation of the continuity equation with respect to the vertical co-ordinate. The least
squares (LS) method minimizes the residuals of the continuity equation (in discrete form) and the two boundary
conditions. The adjoint (ADJ) method minimizes the residuals of the continuity equation (in continuous form)
and the two boundary conditions.

Two domains are considered: a quarter-annular harbour and the southwest coast of Vancouver Island. Results
indicate that the highest-quality solution is obtained with both LS and ADJ. Furthermore, ADJ requires less CPU
and memory than LS. Therefore the optimal method for computation of vertical velocity in a three-dimensional
®nite element model is the adjoint (ADJ) method. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element models of the three-dimensional shallow water equations are commonly used to gain

insight into the behaviour of large bodies of water subject to tides and atmospheric stresses.

Calculation of vertical velocity within these models is dif®cult because the vertical speed is often

three or four orders of magnitude less than the horizontal speed at the same point. However, in some

cases the vertical transport is substantial enough to warrant careful consideration because the

horizontal length scales are usually several orders of magnitude larger than the vertical length scales.
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In such cases, accurate prediction of the vertical component of the current is critical to the

understanding and management of major ®sh and zooplankton stocks, as upwelling is believed to be

responsible for bringing nutrients towards the surface from deeper regions.

The standard approach to solving the three-dimensional shallow water equations with the ®nite

element method consists of three sequential stages.1±3 The ®rst stage is the computation of the free-

surface elevation with a wave equation that is uncoupled from the velocity for a linear system. Next

the horizontal momentum equations are solved to yield the horizontal velocity ®eld, which is a

function of the vertical co-ordinate. The ®nal stage involves calculation of the vertical velocity ®eld

with the three-dimensional continuity equation.

This paper is concerned solely with the ®nal stage, the vertical velocity calculation. The vertical

velocity calculation procedures described here do not depend upon the method used to obtain the

elevation and horizontal velocity ®elds and thus can be implemented in any model that provides those

®elds.

The vertical velocity computation is addressed as follows. The model used to obtain the elevation

and horizontal velocity ®elds is described in Section 2. Four numerical methods of vertical velocity

calculation are described in Section 3. Section 4 describes an application of these four methods to a

tidally forced quarter-annular harbour problem, compares the numerical solutions with the analytic

solution and compares the mass conservation properties of the numerical approaches. Section 5

presents the results obtained with the four numerical vertical velocity methods applied to the

southwester coast of Vancouver Island as well as a conservation of mass analysis.

2. THREE-DIMENSIONAL MODEL FRAMEWORK

The model used to compute the elevation and horizontal velocity ®elds is a three-dimensional

diagnostic model for continental shelf circulation, known as FUNDY5, developed by Lynch et al.4

and Naimie and Lynch.5 This section will provide a brief overview of the model derivation. The

interested reader should refer to these papers for further details.

2.1. Governing equations

FUNDY5 is a ®nite element model that solves the linearized shallow water equations with

conventional hydrostatic and Boussinesq assumptions for periodic motions. The continuity equation

is

@w=@z� H ? V � 0; �1�

where w�x; y; z� is the vertical velocity, V�x; y; z� is the horizontal velocity, with components u and

v;H is the horizontal del operator, �x; y� are the horizontal co-ordinates and z is the vertical co-

ordinate, positive upwards with z� 0 at the surface. The linearized vertical average of (1) is

@Z=@t � H ? �h �V� � 0; �2�

where �V�x; y� is the vertical average of V�x; y; z�; Z�x; y� is the free surface elevation above the

reference level, h�x; y� is the bathymetric depth measured from the reference level and t is time.

The three-dimensional linearized horizontal momentum equation is

@V

@t
� f � Vÿ @

@z
N
@V

@z

� �
� G; �3�
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where f � f ẑ is the vector Coriolis parameter, ẑ is the unit vector in the vertical direction, N �x; y; z� is
the vertical eddy viscosity, G � ÿgHZ is the barotropic pressure gradient and g is gravity. Boundary

conditions on stress are imposed at the free surface and at the bottom:�
N
@V

@z
� hC

�
z�0

; �4�

N
@V

@z
� kV

� �
z�ÿh

; �5�

where hC�x; y� is the atmospheric forcing due to lateral stress and k is the linear bottom stress

coef®cient. The vertical average of (3), after implementation of boundary conditions (4) and (5), is

@ �V

@t
� f � �V� k

h
V

����
ÿh

� G�C: �6�

The governing equations will be considered in their periodic form such that all time-dependent

variables have time variation of the form

q�x; y; z; t� � Q�x; y; z�eiot;

where Q is the complex amplitude, o is the radian frequency and `i' is the imaginary unit,
p�ÿ1�.

The periodic form of the depth-averaged continuity equation is

ioZ� H ? �h �V� � 0; �7�
and the periodic forms of the three-dimensional momentum equation and the depth-averaged

momentum equation are respectively

ioV� f � Vÿ @

@z
N
@V

@z

� �
� G; �8�

io �V� f � �V� k

h
V

����
ÿh

� G�C: �9�

Boundary conditions in the horizontal plane are implemented in order to close the boundary value

problem. Three types of boundary conditions are allowed: speci®ed elevation, speci®ed normal

velocity and geostrophically balanced transport. The response sought is the surface elevation ®eld

and the three-dimensional velocity ®eld.

2.2. Expression of bottom stress as a function of vertically averaged velocity

The momentum equation (3) is coupled in the horizontal velocity components through the Coriolis

term. Introduction of surrogate variables

u� � u� iv

2
; uÿ � uÿ iv

2
; �10�

u � u� � uÿ; iv � u� ÿ uÿ �11�
removes the Coriolis coupling from the momentum equation (3), i.e.

i�o� f �u� ÿ @

@z
N
@

@z
u�

� �
� G�; �12�
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and the boundary conditions (4) and (5) become

N
@u�

@z
� hc�

� �
z�0

; �13�

N
@u�

@z
� ku�

� �
z�ÿh

; �14�

where the forcing terms are de®ned as

G� � Gx � iGy

2
; c� � cx � icy

2
: �15�

Because the momentum equation (12), boundary conditions (13) and (14) and the forcing are linear,

consideration of each forcing phenomenon individually reduces (12) to the superposition of two,

simple, one-dimensional diffusion problems. The diffusion problems are solved at every node of the

horizontal grid with the Galerkin method using linear ®nite elements. The ®rst diffusion problem is

forced with a unit barotropic gradient alone �G� � 1;c� � 0� and yields a solution P�1 ; the second

diffusion problem is forced with unit atmospheric stress alone �G� � 0;c� � 1� and yields a

solution P�2 . Superposition of the two solutions �P�1 ;P�2 � yields the solution to (12):

u� � G�P�1 �z� � c�P�2 �z�: �16�
The vertical average of (16) is

�u� � G� �P�1 � c� �P�2 : �17�
The barotropic pressure gradient G� may be eliminated from (16) by (17):

ku��ÿh� � t�h�u� ÿ a�hc�; �18�
where t� � kP�1 �ÿh�=�h �P�1 � and a� � t� �P�2 ÿ kP�2 �ÿh�=h. The bottom stress component is obtained

in the original �x; y� co-ordinate system according to (10) and (11):

kV�ÿh� � h �V
t� � tÿ

2

� �
ÿ ih

t� ÿ tÿ

2

� �
ẑ� �Vÿ hC

a� � aÿ

2

� �
� ih

a� ÿ aÿ

2

� �
ẑ�C: �19�

Thus bottom stress is now expressed as a function of vertically averaged velocity rather than local

velocity.

2.3. Derivation of wave equation

Expression (19) for bottom stress as a function of vertically averaged velocity can be used in (6) to

eliminate reference to bottom velocity:

�io� t0� �V� f 0 � �V � G�C0; �20�
where all vertical details is represented by the primed quantities f 0; t0 and C0 given by

f 0 � f ÿ it0ẑ; t0 � t� ÿ tÿ

2
;

C0 �C 1� a� � aÿ

2

� �� �
ÿ i

a� ÿ aÿ

2

� �
ẑ�C:
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After some manipulation of (20), �V can be written explicitly as

�V � �io� t0��G�C0� ÿ f 0 � �G�C0�
�io� t0�2 � f 02

: �21�

Substitution of (21) into the vertically averaged continuity equation (2) yields the wave equation

ioZ� H ?
�io� t0�h�G�C0� ÿ f 0 � h�G�C0�

�io� t0�2 � f 02

� �
� 0: �22�

Incorporation of G � ÿgHZ and rearrangement of terms such that known quantities are on the right

and unknown quantities are on the left yields an equation with Z as the only dependent variable:

ioZÿ H ?
�io� t0�ghHZÿ f 0 � ghHZ

�io� t0�2 � f 02

� �
� ÿH ?

�io� t0�hC0 ÿ f 0 � hC0

�io� t0�2 � f 02

� �
: �23�

2.4. Surface elevation

The surface elevation is computed according to the wave equation (23) with the Galerkin method

in a horizontal grid of triangular elements. The weighted residual statement for (23), after

implementation of the Gauss theorem, is

hioZ;jii �
�io� t0�ghHZÿ f 0 � ghHZ

�io� t0�2 � f 02

� �
;Hji

� �
� ÿ

�
G
jih

�V ? n̂ dG� �io� t0�hC0 ÿ f 0 � hC0

�io� t0�2 � f 02

� �
;Hji

� �
; �24�

where ha; bi denotes the inner product of a and b;ji are weighting functions, G is the boundary of the

domain O and n̂ is the outward unit vector to G. The elevation Z is approximated as

Z�x; y� �P3
j�1

Zjjj�x; y�; �25�

where Zj are unknown nodal coef®cients and jj�x; y� are linear triangular basis functions. Substitution

of (25) into (24) yields

�A�fhg � fBg ÿ fFg; �26�
where

Aij � hiojj;jii �
�io� t0�ghHjj ÿ f 0 � ghHjj

�io� t0�2 � f 02

� �
;Hji

� �
;

Bi �
�io� t0�hC0 ÿ f 0 � hC0

�io� t0�2 � f 02

� �
;Hji

� �
;

Fi �
�
G

h �V ? n̂ji dG:

The domain is discretized in the horizontal by linear triangles. All inner products are evaluated

numerically by nodal quadrature.
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2.5. Horizontal velocity pro®les

Once the surface elevation is known, G � ÿgHZ may be computed. The vertical structure of the

horizontal velocity is embedded in the solutions �P�1 ;P�2 � and the components of the vertical pro®les

of the horizontal velocity can be recovered from expression (16) for u� according to (11) and (15):

V�z� � G
P�1 � Pÿ1

2

� �
ÿ i

P�1 ÿ Pÿ1
2

� �
ẑ�G�C

P�2 � Pÿ2
2

� �
ÿ i

P�2 ÿ Pÿ2
2

� �
ẑ�C: �27�

2.6. Vertical velocity pro®les

Although the vertical velocity calculation procedures do not depend on the method used to obtain

the horizontal velocity ®eld, they do depend on the quality of that method. Any errors in calculation

of horizontal velocities will be re¯ected in the subsequent calculation of vertical velocities; the

vertical velocities can be considered to be collectors of error from all previous calculations. As a

result, converged elevation and horizontal velocity ®elds are prerequisites to computations of

accurate vertical velocity ®elds.

A three-dimensional grid is generated by projecting the nodes of the horizontal grid to the bottom

of the domain in vertical lines and discretizing each line into a constant number of vertical elements.

The resulting three-dimensional grid comprises prismatic elements with vertical, quadrilateral sides

and triangular top and bottom faces that are, in general, not parallel to each other. A one-dimensional

system is therefore obtained for each node in the horizontal grid and each one-dimensional system is

uncoupled from all other one-dimensional systems. A schematic diagram of the vertical discretization

is shown in Figure 1. In this work the vertical node spacing for each vertical line is constant.

However, since the length of each vertical line is equal to the bathymetric depth at its horizontal

location, the length of elements may differ from one vertical line to another.

3. FOUR METHODS OF VERTICAL VELOCITY CALCULATION

The three-dimensional continuity equation as given by

@w=@z � ÿH ? V �28�

Figure 1. Detail of vertical discretization
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is used to compute the vertical velocity w. Since H ? V may be calculated from (27), the continuity

equation is an ordinary, ®rst-order differential equation that can satisfy only one boundary condition.

In general an estimate of vertical velocity is available at the bottom and the free surface respectively:

w � u
@h

@x
� v

@h

@y

� �
z�ÿh

; �29�

�w � ioZ�z�0: �30�

Either (29) or (30) can serve as the boundary condition, but imposition of both (29) and (30) when

solving (28) overdetermines the system. No unique solution exists for an overdetermined system of

equations. Four approaches to the solution of this overdetermined system of equations will now be

described: the traditional method, the vertical derivative of continuity method, the least squares

method and the adjoint method.

3.1. Traditional (TRAD) method

Traditionally, the overdetermined continuity system has been solved by simply not enforcing one

of the bottom or surface boundary conditions and using the neglected condition as a measure of error

accumulated over the water column.2 In this way the overdetermined system is reduced to a

determined one. Unfortunately, because the neglected boundary condition contains valuable

information, unsatisfactory accumulation of error over the water column results, with the greatest

error occurring at the location where the condition is neglected. In addition, if the enforced condition

has any error, that error will be re¯ected throughout the water column as an additive constant. This

approach will henceforth be referred to as `TRAD'.

3.2. Vertical derivatives of continuity equation (VDC) method

As suggested by Lynch and Werner,2 an alternative method of vertical velocity calculation

involves solution of the second-order equation that results after differentiating (28) with respect to z:

@2w

@z2
� ÿ @

@z
�H ? V�: �31�

Because (31) is a second-order differential equation, both boundary conditions (29) and (30) may be

enforced when (31) is solved by the Galerkin ®nite element method. However, the restriction of the

original continuity equation is compromised in favour of the additional boundary condition. The

resulting mass conservation properties are studied in Sections 4 and 5. This approach, involving the

vertical derivative of the continuity equation, will henceforth be referred to as `VDC'.

3.3. Least squares method

The ®rst new procedure for calculation of vertical velocity developed in this work involves

solution of the continuity equation in its original form and imposition of both boundary conditions.

Although the overdetermined system of equations cannot be solved uniquely, the Eulerian norm of

the residual may be minimized according to the theory of least squares.6 By allowing non-zero

residuals for the boundary conditions and the original conservation of mass equation, the least squares

approach resembles the traditional method, since the original continuity equation is solved. However,

it also resembles VDC in that both boundary conditions are retained.
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Enforcement of the original three-dimensional continuity equation (28) between adjacent nodes in

the vertical (see Figure 1) yields nÿ 1 equations:

wi ÿ wiÿ1 � ÿ
�zi

ziÿ1

H ? V dz for i � 2; . . . ; n: �32�

The two boundary conditions (29) and (30) and the nÿ 1 equations of (32) constitute a total of n� 1

equations. The least squares procedure (henceforth `LS') allows non-zero residuals for the boundary

conditions and the conservation of mass equation, much like the data assimilation procedure

described by Zahel.7

3.4. Adjoint method

A second technique for calculation of vertical velocity developed in the present work is based upon

the adjoint approach of Bennett and McIntosh.8,9 While LS minimizes the residuals of the continuity

equation in its discrete form and the two boundary conditions, the adjoint approach (`ADJ')

minimizes the residuals of the continuity equation in its continuous form as well as the residuals of

the two boundary conditions. The continuity equation and boundary conditions are reconsidered as a

variational problem:10

I � L

�0

ÿh

@w

@z
� H ? V

� �2

dz� �wÿ V ? Hh�2z�ÿh � �wÿ ioZ�2z�0; �33�

where L is a scale factor with units of length, introduced for dimensional consistency. Let the

function w which minimizes I be called w0. Furthermore, let wa be an arbitrary function which

satis®es the homogeneous boundary conditions wa�ÿh� � wa�0� � 0. Then the equation

w � w0 � Ewa; �34�
where E is an arbitrary constant, represents a one-parameter family of curves that includes the optimal

solution w0 when E� 0. Every curve in the family satis®es the boundary values of the optimal

solution. Furthermore, the optimal solution is assumed to consist of two components:

w0 � wt � wc; �35�
where wt is the traditional solution obtained through imposition of just one boundary condition, as

described in Section 3.1, and wc is some correction that will be determined. Insertion of (35) into (34)

yields

w � wt � wc � Ewa: �36�
Substitution of (36) into (33) yields

I � L

�0

ÿh

@�wt � wc � Ewa�
@z

� H ? V

� �2

dz

� �wt � wc � Ewa ÿ V ? Hh�2z�ÿh � �wt � wc � Ewa ÿ ioZ�2z�0: �37�
The optimal correction is the particular correction that minimizes I with respect to E:

@I

@E
� 2L

�0

ÿh

@wa

@z

@�wt � wc � Ewa�
@z

� H ? V

� �
dz

� 2�wa�wt � wc � Ewa ÿ V ? Hh��z�ÿh � 2�wa�wt � wc � Ewa ÿ ioZ��z�0 � 0: �38�
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In addition, it is seen from (34) that the optimal solution is attained when E� 0. For E� 0, (38)

becomes

0 � L

�0

ÿh

@wa

@z

@�wt � wc�
@z

� H ? V

� �
dz

� �wa�wt � wc ÿ V ? Hh��z�ÿh � �wa�wt � wc ÿ ioZ��z�0: �39�
A residual variable for the continuity equation, l, is de®ned as

l � @�wt � wc�=@z� H ? V; �40�
and (39) becomes

0 � L

�0

ÿh

@wa

@z
l dz� �wa�wt � wc ÿ V ? Hh��z�ÿh � �wa�wt � wc ÿ ioZ��z�0: �41�

Integration by parts of the ®rst term to shift derivatives from wa to l yields

0 � ÿL

�0

ÿh

@l
@z

wa dz� �wa�wt � wc ÿ V ? Hhÿ Ll��z�ÿh � �wa�Ll� wt � wc ÿ ioZ��z�0: �42�

Because wa is arbitrary, satisfaction of (42) requires three conditions:

�i� @l=@z � 0;

�ii� �wt � wc ÿ V ? Hhÿ Ll�z�ÿh � 0;

�iii� �Ll� wt � wc ÿ ioZ�z�0 � 0:

Furthermore, it is assumed that wt is obtained by imposition of the bottom boundary condition, with

the surface boundary condition neglected, such that in general

@wt=@z � ÿH ? V; �43�

�wt � V ? Hh�z�ÿh; �44�

�wt 6� ioZ�z�0: �45�
Integration of condition (i) yields

l � c1; �46�
where c1 is a constant of integration. Insertion of de®nition (40) of l yields

@�wt � wc�=@z� H ? V � c1: �47�
However, wt has been assumed to exactly satisfy the governing equation as stated in (43), so (47)

reduces to

@wc=@z � c1: �48�
Integration of (48) yields

wc � c1z� c2; �49�
where c2 is another constant of integration.

Determination of the integration constants in (49) requires two boundary conditions, one of which

may be attained from condition (ii):

�wt � wc ÿ V ? Hhÿ Ll�z�ÿh � 0: �50�
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Since wt has been assumed to exactly satisfy the bottom boundary condition, (50) reduces to

�wc ÿ Ll�z�ÿh � 0: �51�
In addition, l � c1 from (46), so (51) yields one of the required boundary conditions for (49):

wcjz�ÿh � Lc1: �52�
The constant of integration c2 can now be determined from (49) as

c2 � c1�L� h� �53�
and insertion of (53) into expression (49) yields for the correction

wc � c1�L� h� z�: �54�
The second required boundary condition may be obtained from condition (iii):

�Ll� wt � wc ÿ ioZ�z�0 � 0: �55�
Substitution of (54) into (55) yields an expression for c1:

c1 �
ioZÿ wtjz�0

2L� h
: �56�

Substitution of (56) into (54) yields the desired correction

wc �
ioZÿ wtjz�0

2L� h

� �
�L� h� z�; �57�

which is a linear function of the mis®t between the traditional solution at the surface and the

neglected surface boundary condition.

If the traditional solution is obtained with the surface boundary condition and the adjoint procedure

is repeated, a different correction term is obtained:

wc �
wt ÿ V ? Hhjz�ÿh

2L� h

� �
�zÿ L�: �58�

Regardless of which boundary condition is used in the determination of wt, the same optimal solution

is obtained when the appropriate correction wc is applied.

4. QUARTER-ANNULAR HARBOUR

A particularly attractive departure point for comparison of the behaviour of TRAD, VDC, LS and

ADJ is a study of an annular harbour, because an analytic solution for the vertical velocity is known.

The analytic solution for the depth-averaged case was developed by Lynch and Gray11 for constant,

linear and quadratic bathymetry for both steady state wind set-up and periodic tidal response. This

analytic solution has been used extensively as a test case for two-dimensional ®nite element shallow

water codes.12±14 The analytic solution was extended to three dimensions by Lynch and Of®cer15 for

tidal oscillations near a circular island where the tidal amplitude at the open ocean boundary varies

with position. For the purposes of this study the analytic solution of Lynch and Of®cer15 is considered

with spatially constant tidal amplitude forcing at the open ocean boundary.

4.1. Description of quarter-annular harbour problem

The geometry of the quarter-annular harbour is shown in Figure 2(a). The boundaries at

r � r1� 46104 m, y� 0 and y � p=2 are no-¯ow boundaries. The open boundary, located at
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r � r2� 16105 m, is forced by an M2 tide with frequency 1�40561074 s71 and amplitude 0�1 m.

The horizontal grid, as shown in Figure 2(a), was generated with XMGREDIT, a ¯exible interactive

grid generation code developed by Turner and Baptista.16 The bottom of the harbour, as shown in

Figure 2(b), is quadratic in r and constant in y such that h � r2=H , with H� 1�66108 m. The grid

contains 825 nodes and 1536 elements. The analytic solution with constant amplitude forcing,

including the vertical velocity, which is not determined by Lynch and Of®cer,15 is found in the

Appendix.

4.2. Behaviour of three methods of calculation of vertical velocity

The vertical velocities are computed using four methods: the traditional method (TRAD), the

vertical derivative of the continuity method (VDC), the least squares method (LS) and the adjoint

method (ADJ) with L� 1 m. All solutions presented are converged; further re®nement of the

horizontal and vertical grids does not signi®cantly change the solution.

Two typical vertical velocity pro®les are shown in Figures 3 and 4. The analytic vertical velocity

pro®le is computed with the analytic horizontal velocity pro®le, while the four approximate vertical

velocity pro®les are computed with the horizontal velocity pro®les obtained from the ®nite element

solution. However, the analytic and ®nite element horizontal pro®les are nearly identical. The vertical

velocity pro®les shown in these ®gures are representative of pro®les obtained throughout the tidal

cycle for various values of K, l and r. The pro®les in Figure 3 are obtained at one-eighth of the tidal

cycle with r� 82,500 m, l� 9�206� 9�206i and K� 2�836, while the pro®les in Figure 4 are obtained

at the beginning of the tidal cycle with r� 70,000 m, l� 6�627� 6�627i and K� 102�1. Although

these solutions are converged, TRAD, LS and ADJ converge to a different solution from VDC. Most

importantly, the TRAD, LS and ADJ solutions are nearly identical with the analytic solution. In fact,

for all pro®les studied, the TRAD, LS and ADJ solutions more closely approximate the analytic

solution than does VDC.

4.3. Conservation of mass analysis

It has been shown that, at least for the quarter-annular harbour test case, TRAD, LS and ADJ

approximate the analytic vertical pro®le more accurately than VDC. However, an analytical solution

will not be available for natural domains. A conservation of mass analysis is undertaken to establish a

Figure 2. (a) Section view of quarter-annular harbour with opening at r � r2. (b) Side view of quarter-annular harbour with
quadratic bottom
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criterion for comparison of the three methods that does not rely upon the availability of an analytic

solution.

For an incompressible ¯uid the expression of the principle of conservation of mass for a ®xed

volume with outer surface G is

�
G
�V� wẑ� ? n̂ dG � 0; �59�

Figure 4. Vertical velocity pro®le calculated with TRAD, VDC, LS and ADJ compared with analytic solution at beginning of a
tidal cycle, with r� 70,000 m, l� 6�627� 6�627i and K� 102�1

Figure 3. Vertical velocity pro®le calculated with TRAD, VDC, LS and ADJ compared with analytic solution at one-eighth of a
tidal cycle, with r� 82,500 m, l� 9�206� 9�206i and K� 2�836
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where n̂ is the outward normal vector to the surface G and ẑ is the unit vector in the vertical direction.

In the case of an approximate solution, (59) takes the form�
G
�V� wẑ� ? n̂ dG � Res; �60�

where Res is a residual. The residual is examined using TRAD, VDC, LS and ADJ with the surface of

one three-dimensional ®nite element serving as the surface of integration in equation (60). The

vertical faces and the top and bottom surfaces of the element will be considered separately:

Res � P3
k�1

�
Gv;k

�V� wẑ� ? n̂ dGv;k

 !
�
�
Gt

�V� wẑ� ? n̂ dGt �
�
Gb

�V� wẑ� ? n̂ dGb; �61�

where Gv;k; k � 1; 2; 3, are the three vertical faces and Gt and Gb are the top and bottom surfaces

respectively.

As an example, the residual is computed over several tidal cycles for the single element centred at

r� 70,800 m and s� 7 0�322 (z� 7 13�7 m). The residual versus time is plotted in Figure 5. The

residual obtained by all three methods is a sinusoidal wave with a period of 12�42 h, the same period

as the forcing. However, the amplitude of the residual obtained with VDC is 0�74 m3 s71, while the

residual obtained with TRAD, LS and ADJ has an amplitude of 0�015 m3 s71, less by a factor of 50.

This behaviour is typical for elements throughout the three-dimensional domain. Although the

traditional method conserves mass exactly over each one-dimensional vertical system, mass

conservation will not be exact in a three-dimensional element unless the velocity variation between

nodes is linear.

5. SOUTHWESTERN VANCOUVER ISLAND

This section examines vertical velocity calculations in the portion of the Paci®c Ocean adjacent to the

southwestern coast of Vancouver Island, as shown in Figure 6. The region is bounded by Vancouver

Figure 5. Residual versus time calculated with TRAD, VDC, LS and ADJ at r� 70,800 m and s� 7 0�322. See Figures 3 or 4
for key to curves
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Island on the northeast and Washington State on the east. Open ocean boundaries 1, 2 and 3 lie in the

Paci®c Ocean and boundary 4 lies at the opening of the Strait of Juan de Fuca.

The bottom topography of the region is shown in Figure 7. The region is characterized by an

extensive continental shelf, a steep continental slope and a broad continental rise.17 The Juan de Fuca

Canyon, which is about 10 km wide and 400 m deep, runs roughly north=south through the eastern

portion of the domain. Jutting northward from the Juan de Fuca Canyon is a second, smaller canyon

known as the Spur18 or Tully19 Caynon. The Tully Canyon is associated with a summer upwelling

event known as the Tully Eddy which causes a near-surface mass of high-density water. The eddy

affects temperature, salinity, nutrients and dissolved oxygen ®elds and is likely a major source of

nutrients for the southern Vancouver Island shelf.18 A better understanding and more accurate

Figure 6. Map of southwestern Vancouver Island area

Figure 7. Bathymetry of southwestern Vancouver Island domain
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prediction of vertical velocities in this region would be very useful to ®shery scientists and

management.

5.1. Forcing

To study the performance of TRAD, VDC, LS and ADJ in a complex domain while maintaining a

certain amount of control over the response of the system, the system is forced with a steady wind,

attained by setting hC� (7 0�001, 0�001) m2 s72 in the surface boundary condition (4). This stress

value corresponds to a wind of magnitude 7 m s71 from the southeast, a typical winter wind. Figure 8,

which shows the surface currents attained with this forcing, provides an indication of the response of

the system.

5.2. Boundary conditions

No-normal-¯ow boundary conditions are imposed at all land boundaries. To prevent wetting and

drying of elements, the minimum bathymetric depth is set to 10 m. Boundary 1 is treated as a

geostrophic boundary such that the elevation gradient and transport are in geostrophic balance,5 while

boundaries 2, 3 and 4 are speci®ed as having zero elevation.

5.3. Convergence study

Interval halving is used to determine the convergence of this numerical problem. The domain is

discretized with three grids as follows. The ®rst grid, SWVI1, is a coarse grid consisting of 1396

nodes and 2519 elements, as shown in Figure 9. It is derived from the more extensive grid of Foreman

et al.20 that covers the entire west coast of Vancouver Island. The grid is designed to compromise

among three design requirements; (i) a close ®t of the grid to the coastline, (ii) a near-equilateral

element shape and (iii) a near-uniform ratio of element area to bathymetric depth.21 These three

criteria are similar to those developed by Westerink et al.22,23 The second grid, SWVI2, is created by

dividing each element in SWVI1 into four elements, as illustrated in Figure 10. SWVI2 contains 5390

nodes and 10,216 elements. The same re®nement procedure is repeated to create a third grid, SWVI3,

Figure 8. Surface currents resulting from steady 7 m s71 wind from southeast
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consisting of 20,988 nodes and 40,864 elements. The bathymetry ®elds of all three grids are identical;

the nodal values for the bathymetry in SWVI2 and SWVI3 are obtained through linear interpolation

of the bathymetry in SWVI1. The results presented here are produced with 15 s-layers in the vertical.

The bottom friction and vertical eddy viscosity values used in this example are 0�015 m s71 and

0�01 m2 s71 respectively. All solutions presented are converged in the vertical; additional layers do

not substantially affect the solution.

Figure 11 shows the vertical pro®les of the lateral velocities for node A, whose location on

Swiftsure Bank is indicated in Figure 7. These horizontal pro®les are converging well; the difference

between the solutions obtained with SWVI2 and SWVI3 is roughly one-third of the difference

between the solutions obtained with SWVI1 and SWVI2. Although the pro®les differ quantitatively

throughout the domain, the convergence behaviour of this node is representative of the entire domain.

Next the vertical velocity pro®les at node A obtained with TRAD, VDC, LS and ADJ are shown in

Figure 12. These vertical pro®les are representative of the qualitative behaviour of the pro®les

obtained throughout the domain, although the pro®les differ quantitatively. Three important features

are illustrated by this ®gure. First, the scales of parts (a), (b) and (c) are identical; the differences in

the pro®les are signi®cant. The vertical velocity solution shows disagreement in both magnitude and

direction of the ¯ow. VDC predicts downwelling in the bottom portion of the domain, while TRAD,

LS and ADJ predict upwelling. Secondly, the solutions obtained with LS and ADJ are nearly

identical, but differ markedly from the TRAD solution, especially with coarse resolution and at the

Figure 9. Coarse grid of southwestern Vancouver Island

Figure 10. Grid re®nement procedure
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surface. Finally, in all three cases the vertical velocity is dependent upon the resolution of the

horizontal grid and is therefore sensitive to the degree of convergence of the horizontal velocity

solution.

5.4. Conservation of mass

It has been shown that the computed vertical velocity pro®le is dependent on the computation

method in the southwest Vancouver Island domain. The conservation of mass properties of the four

methods are considered here in an effort to make a de®nitive statement as to which method leads to a

more realistic vertical velocity pro®le.

The residual for each element of the three-dimensional conservation of mass equation is computed

as described in Section 4.3 and summed over each s-layer:

Resj* �
Pelements

i

Resij for j � 1; . . . ; ns ÿ 1; �62�

where i represents the horizontal element number, j represents the vertical s-layer and ns is the

number of nodes in the vertical. The summation leads to a total residual Resj* for each s-layer j.

Figure 13 is a plot of dimensionless depth versus the corresponding Resj* for TRAD, VDC, LS and

ADJ. The VDC residual has large deviations from zero at the surface and at the bottom where the

boundary conditions are enforced exactly.

Figure 11. Horizontal velocity pro®les at node A in Figure 7
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The Resj* calculation described in (62) allows error cancellation between positive and negative

residuals within each layer. To examine the extent of error cancellation, the layer residual calculation

is repeated with the absolute value of the residual,

Resj*
abs � Pelements

i

jResijj; �63�

and the results are shown in Figure 14. Throughout the pro®le the Resj*
abs obtained with TRAD, LS

and ADJ is much closer to zero than that obtained with VDC. While the VDC residual diverges from

zero with increasing horizontal resolution (Figure 14(b)), the TRAD, LS and ADJ residual converges

towards zero as the horizontal resolution increases (Figures 14(a), 14(c) and 14(d)).

Figure 12. Vertical velocity pro®les at node A in Figure 7
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6. CONCLUSIONS

Two methods of vertical velocity calculations that assimilate additional information at the boundary

(previously LS and ADJ) are proposed and examined within the con®nes of the three-dimensional

®nite element model. The performance of these methods is compared with both a traditional approach

which neglects some of the boundary information (previously TRAD) and an approach which solves

the vertical derivative of the continuity equation with two boundary conditions (previously VDC). In

a quarter-annular harbour domain, the TRAD, LS and ADJ better approximate the analytic solution

and have better mass conservation properties than VDC. Furthermore, the former three approaches

have almost identical behaviour. An application to the southwestern Vancouver Island domain shows

Figure 13. Residual pro®les obtained with TRAD, VDC, LS and ADJ (full view on left, close-up view on right) for SWVI1
(ÐÐ), SWVI2 (- � -) and SWVI3 (. . . . . .)
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that the vertical velocity pro®le is dramatically dependent upon the method of calculation. In this

domain the vertical velocity obtained with TRAD shows a large deviation from the neglected

boundary condition. As with the quarter-annular harbour, TRAD, LS and ADJ have better mass

conservation properties than VDC. Furthermore, the deterioration in mass conservation which arises

from allowing residuals in the conservation of mass equation (in both LS and ADJ) is quite small.

The vertical velocity pro®les and hence the mass conservation properties obtained with LS and

ADJ are nearly identical throughout this analysis. These methods clearly outperform VDC in both the

quarter-annular harbour and the southwestern Vancouver Island studies. Although TRAD, LS and

ADJ demonstrate nearly equivalent results in the quarter-annular harbour study, in the southwestern

Vancouver Island study the TRAD method clearly does not satisfy the neglected boundary condition,

while LS and ADJ account for this condition. The least squares method has larger CPU and memory

requirements as it requires a matrix multiplication and then solution of a system of linear algebraic

equations. Implementation of the adjoint method is very simple as it involves only a traditional

Figure 14. Absolute residual pro®les obtained with TRAD, VDC, LS and ADJ
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calculation of the vertical velocity and then an algebraic calculation for a correction. It is therefore

concluded that the optimal method for computation of vertical velocity in a three-dimensional ®nite

element model is the adjoint method.
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APPENDIX: ANALYTIC SOLUTION WITH CONSTANT AMPLITUDE FORCING

A radial co-ordinate system is used for the analytical solution to the quarter-annular test problem.

Because the governing equations, boundary conditions and domain geometry do not depend on y,

variation occurs only in the radial and vertical directions.

The equations to be solved are the linearized horizontal momentum equation in periodic form, with

Coriolis force neglected,

ioVR � gHZÿ @

@z
N
@VR

@z

� �
� 0; �64�

and the linearized, depth-averaged continuity equation in periodic form,

ioZ� H ? �h �VR� � 0; �65�
where VR�r; z� is the component of the velocity in the radial direction, �VR�r� is the vertical average of

VR; Z�r� is a function only of r;N is constant, H is the horizontal del operator in radial co-ordinates

and �r; z� are the radial and vertical co-ordinates respectively.

In the horizontal the no-normal-¯ow boundary condition is enforced on the land boundaries, i.e.

@Z=@r � 0 at r � r1; @Z=@y � 0 at y � 0; p=2;

and the elevation is speci®ed on the open boundary, i.e.

Z � RefZ0eiotg at r � r2:

A stress boundary condition is enforced at the surface as described by (2), but with no wind stress. In

addition, since it has been shown that bottom stress may be expressed in terms of vertically averaged

velocity with a complex slip coef®cient, the bottom boundary condition is restated as

N
@VR

@z

����
z�ÿh

� th �VR; �66�

where t is an unknown complex, linear slip coef®cient to be determined later.

Surface elevation

The vertical average of (64), after incorporation of boundary conditions (2) and (66), is

�io� t� �VR � gHZ � 0: �67�
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�VR can be eliminated among (65) and (67) to obtain a wave equation in Z alone:

ioZÿ H ?
gh

io� t
HZ

� �
� 0: �68�

The surface elevation Z can now be calculated from (68) and appropriate boundary conditions. Lynch

and Gray11 implement separation of variables to determine the solution to (68):

Z�r; t� � Ref�Ars1 � Brs2 �eiotg; �69�
where

A � Z0s2r
s2

1

s2r
s1

2 r
s2

1 ÿ s1r
s1

1 r
s2

2

; B � ÿZ0s1r
s1

1

s2r
s1

2 r
s2

1 ÿ s1r
s1

1 r
s2

2

;

s1 � ÿ1�p�1ÿ b2�; s2 � ÿ1ÿp�1ÿ b2�; b2 � �o2 ÿ iot�=�gh0�:
An expression for t is yet to be determined.

Horizontal velocity ®eld

The horizontal velocity ®eld will be obtained from the momentum equation (64) and the surface

elevation ®eld (69). The vertical co-ordinate of the momentum equation will be stretched to a s-co-

ordinate system such that s � z=h. Accordingly, the moment equation (64) may be rewritten as

VR ÿ
@

@s
N

ioh2

@VR

@s

� �
� V0R; �70�

where

V0R � ÿg
HZ
io
: �71�

Incorporation of the elevation solution (69) in (71) yields

V0R � ÿ
g

ior
�s1Ars1 � s2Brs2�eiot: �72�

A particular solution to (70) is VR � V0R, so the general solution is

VR � V0R � C1m1�s� � C2m2�s�; �73�
where m1 and m2 are scalar functions that satisfy the homogeneous form of (70):

m1 � exp�sl�; m2 � exp�ÿsl�;
with l � p�ioh2=N �. The constants of integration C1 and C2 are determined by requiring (73) to

satisfy the boundary conditions (2) and (66). The horizontal velocity ®eld is

VR � V0R 1ÿ cosh�ls�
cosh l�1� �l=K� tanh l�

� �
; �74�

where K � kh=N is the dimensionless slip coef®cient. The vertical average of V is obtained through

integration of (74) over the depth:

�VR � V0R 1ÿ tanh l
l�1� �l=K� tanh l�

� �
: �75�
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Complex bottom slip coef®cient

Once VR and �VR are known, t can be determined from the bottom boundary condition (66), in

s-co-ordinates, as

N

h

@VR

@s

����
s�ÿ1

� th �VR: �76�

After substitution of (74) and (75), some algebraic manipulation yields an expression for t:

t � N

h2

l2 tanh l

l� �l2=K ÿ 1� tanh l

 !
: �77�

This relationship between known parameters K; l and N and the complex bottom stress coef®cient

completes the surface elevation solution (69) and the horizontal velocity solution (74). For the

remainder of the derivation, t will be constant, i.e. N and k vary with h such that l and K remain

constant.

Vertical velocity

To obtain the complete three-dimensional velocity ®eld, the vertical velocity must be determined

from the continuity equation. In three dimensions and radial co-ordinates, with variation in the y-

direction neglected, the continuity equation is

1

r

@

@r
�rVR� �

@w

@z
� 0: �78�

Transformation into s-co-ordinates �s � z=h; r � R�, use of the bathymetry relationship h � r2=H
and implementation of the chain rule to evaluate the derivatives yields

@

@r
� @s
@r

@

@s
� @R
@r

@

@R
� ÿ 2s

r

@

@s
� @

@R
;

@

@z
� @s
@z

@

@s
� @R
@z

@

@R
� H

r2

@

@s
:

Equation (78) may be written as

ÿ 2s
H

@

@s
�RVR� �

r

H

@

@R
�RVR� �

@w

@s
� 0: �79�

Integration of (79) over s and incorporation of the bottom boundary condition wjs�ÿ1 � ÿ2VRR=H
yields

w�s� � 2

H

�s
ÿ1

s
@

@s
�RVR� dsÿ r

H

�s
ÿ1

@

@R
�RVR�dsÿ

2VRR

H
: �80�

Evaluation of the derivatives and appropriate integration yields the analytic vertical velocity solution

w�s� � 2ga1d
s cosh�ls� � cosh l

l
ÿ sinh�ls� � sinh l

l2

� �
� ga2 s� 1

d sinh�ls� � sinh l

l2

� �
� 2ga1 1ÿ d cosh l

l

� �
;
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where

g � gh0

io
exp�iot�; d � l

cosh l�1� �l=K� tanh l� ;

a1 � As1Rs1 � Bs2Rs2 ; a2 � As2
1Rs1 � Bs2

2Rs2 :
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